Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 59(1): 49-55, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734629

RESUMO

Vertebrate surveillance for eastern equine encephalitis virus (EEEV) activity usually focuses on three types of vertebrates: horses, passerine birds, and sentinel chicken flocks. However, there is a variety of wild vertebrates that are exposed to EEEV infections and can be used to track EEEV activity. In 2009, we initiated a pilot study in northern New England, United States, to evaluate the effectiveness of using wild cervids (free-ranging white-tailed deer and moose) as spatial sentinels for EEEV activity. In Maine, New Hampshire, and Vermont during 2009-2017, we collected blood samples from hunter-harvested cervids at tagging stations and obtained harvest location information from hunters. U.S. Centers for Disease Control and Prevention processed the samples for EEEV antibodies using plaque reduction neutralization tests (PRNTs). We detected EEEV antibodies in 6 to 17% of cervid samples in the different states and mapped cervid EEEV seropositivity in northern New England. EEEV antibody-positive cervids were the first detections of EEEV activity in the state of Vermont, in northern Maine, and northern New Hampshire. Our key result was the detection of the antibodies in areas far outside the extent of documented wild bird, mosquito, human case, or veterinary case reports of EEEV activity in Maine, New Hampshire, and Vermont. These findings showed that cervid (deer and moose) serosurveys can be used to characterize the geographic extent of EEEV activity, especially in areas with low EEEV activity or with little or no EEEV surveillance. Cervid EEEV serosurveys can be a useful tool for mapping EEEV activity in areas of North America in addition to northern New England.


Assuntos
Cervos , Vírus da Encefalite Equina do Leste/isolamento & purificação , Encefalomielite Equina/veterinária , Animais , Encefalomielite Equina/epidemiologia , Maine/epidemiologia , New Hampshire/epidemiologia , Projetos Piloto , Prevalência , Estudos Soroepidemiológicos , Vermont/epidemiologia
2.
J Med Entomol ; 58(2): 787-797, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128057

RESUMO

Pesticide resistance in arthropod vectors of disease agents is a growing issue globally. Despite the importance of resistance monitoring to inform mosquito control programs, no regional monitoring programs exist in the United States. The Northeastern Regional Center for Excellence in Vector-Borne Diseases (NEVBD) is a consortium of researchers and public health practitioners with a primary goal of supporting regional vector control activities. NEVBD initiated a pesticide resistance monitoring program to detect resistant mosquito populations throughout the northeastern United States. A regionwide survey was distributed to vector control agencies to determine needs and refine program development and in response, a specimen submission system was established, allowing agencies to submit Culex pipiens (L.) (Diptera:Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) for pesticide resistance testing. NEVBD also established larvicide resistance diagnostics for Bacillus thuringiensis israelensis (Bti) and methoprene. Additional diagnostics were developed for Cx. pipiens resistance to Lysinibacillus sphaericus. We received 58 survey responses, representing at least one agency from each of the 13 northeastern U.S. states. Results indicated that larvicides were deployed more frequently than adulticides, but rarely paired with resistance monitoring. Over 18,000 mosquitoes were tested from six states. Widespread low-level (1 × LC-99) methoprene resistance was detected in Cx. pipiens, but not in Ae. albopictus. No resistance to Bti or L. sphaericus was detected. Resistance to pyrethroids was detected in many locations for both species. Our results highlight the need for increased pesticide resistance testing in the United States and we provide guidance for building a centralized pesticide resistance testing program.


Assuntos
Culicidae/efeitos dos fármacos , Resistência a Inseticidas , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Animais , Bacillaceae , Bacillus thuringiensis , Bioensaio/métodos , Agentes de Controle Biológico/farmacologia , Culex/efeitos dos fármacos , Culex/crescimento & desenvolvimento , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Metoprene/farmacologia , Controle de Mosquitos , Mosquitos Vetores/crescimento & desenvolvimento , Piretrinas/farmacologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA